Human Ear and the sense of Hearing

 The ear is the organ of hearing. The outer ear protrudes away from the head and is shaped like a cup to direct sounds toward the tympanic membrane, which transmits vibrations to the inner ear through a series of small bones in the middle ear called the malleus, incusand stapes. The inner ear, or cochlea, is a spiral-shaped chamber covered internally by nerve fibres that react to the vibrations and transmit impulses to the brain via the auditory nerve. The brain combines the input of our two ears to determine the direction and distance of sounds.

Human Ear Structure


The human ear can perceive frequencies from 16 cycles per second, which is a very deep bass, to 28,000 cycles per second, which is a very high pitch. Bats and dolphins can detect frequencies higher than 100,000 cycles per second. The human ear can detect pitch changes as small as 3 hundredths of one percent of the original frequency in some frequency ranges. Some people have “perfect pitch”, which is the ability to map a tone precisely on the musical scale without reference to an external standard. 

It is estimated that less than one in ten thousand people have perfect pitch, but speakers of tonal languages like Vietnamese and Mandarin show remarkably precise absolute pitch in reading out lists of words because pitch is an essential feature in conveying the meaning of words in tone languages. The Eguchi Method teaches perfect pitch to children starting before they are 4 years old. After age 7, the ability to recognise notes does not improve much.

Functions of the human ear

We can hear with the help of one of the highly sensitive organ of our body called the ear. Audible frequencies help the ear convert pressure variations in air into electrical signals that travel to our brains through auditory nerve.

The outer ear which we see is called pinna and collects sound from the surroundings. This collected sound passes through the auditory canal, at the end of which there is a thin membrane called ear drum or tympanic membrane. The sound travels through a series of compression and rarefactions through the medium. When one such compression of the medium reaches the eardrum the pressure on the outside of it increases and pushes the eardrum inward. 

In the same way, the eardrum moves outward. When a rarefaction reaches its so the eardrum vibrates in this way. These vibrations are amplified a number of times by three bones named hammer, anvil and stirrup in the middle ear, which transmits the amplified pressure variations received from the sound wave to the inner ear. In the inner ear the pressure vibrations are turned into electrical signals by the cochlea. These electrical signals are transmitted to the brain through auditory nerve and the brain interprets the electrical signal to sound again.

mitsotso

Share
Published by
mitsotso

Recent Posts

The Best of Modern Air Fight Movies of All Time

The cinematic portrayal of aerial combat has evolved significantly since the early days of film.…

4 months ago

Issues Relating to Aims and Policy Planning in Zambia

Let us use this golden opportunity to discuss the most important Issues Relating to Aims…

4 months ago

The Co-ordination Stage of Policy Planning in Zambia: An In-Depth Analysis

This blog post will delve into the intricacies of the coordination stage of policy planning…

4 months ago

The Classroom Battleground: Exploring the Educational Consequences of the Israel-Palestine Conflict

The Israel-Palestine conflict, which has persisted for decades, is a poignant example of how geopolitical…

4 months ago

Unlocking the Mind: Exploring Modern Psychological Approaches

Psychology, the scientific study of the mind and behaviour, has evolved significantly over the years.…

4 months ago

The World Cup History: Unveiling the Birth, Evolution, Memorable Moments, and Impact of Football’s Greatest Tournament

Experience the journey of the world's most prestigious football tournament in this captivating article on…

2 years ago